9,866 research outputs found

    Rotor systems research aircraft predesign study. Volume 4: Preliminary draft detail specification

    Get PDF
    The RSRA requirements are presented in a detail specification format. Coverage of the requirements includes the following headings: (1) aircraft characteristics, (2) general features of design and construction, (3) aerodynamics, (4) structural design criteria, (5) flight control system, (6) propulsion subsystem, and (7) secondary power and distribution subsystem

    Advanced development of Pb-salt semiconductor lasers for the 8.0 to 15.0 micrometer spectral region

    Get PDF
    The technology was studied for producing Pb-salt diode lasers for the 8-51 micron spectral region suitable for use as local oscillators in a passive Laser Heterodyne Spectrometer (LHS). Consideration was given to long range NASA plans for the utilization of the passive LHS in a space shuttle environment. The general approach was to further develop the method of compositional interdiffusion (CID) recently reported, and used successfully at shorter wavelength. This technology was shown to provide an effective and reproducible method of producing a single-heterostructure (SH) diode of either the heterojunction or single-sided configuration. Performance specifications were exceeded in several devices, with single-ended CW power outputs as high as 0.88 milliwatts in a mode being achieved. The majority of the CID lasers fabricated had CW operating temperatures of over 60K; 30% of them operated CW above the boiling temperature of liquid nitrogen. CW operation above liquid nitrogen temperature was possible for wavelengths as long as 10.3 microns. Operation at 77K is significant with respect to space shuttle operations since its allows considerable simplification of cooling method

    Single particle spectrum of the flux phase in the FM Kondo Model

    Full text link
    We investigate the 2D ferromagnetic Kondo lattice model for manganites with classical corespins at Hund's rule coupling J_H=6, with antiferromagnetic superexchange 0.03 < J' < 0.05. We employ canonical and grand canonical unbiased Monte Carlo simulations and find paramagnetism, weak ferromagnetism and the Flux phase, depending on doping and on J'. The observed single particle spectrum in the flux phase differs from the idealized infinite lattice case, but agrees well with an idealized finite lattice case with thermal fluctuations.Comment: contribution to the SCES04 conferenc

    pH sensor properties of electrochemically grown iridium oxide

    Get PDF
    The open-circuit potential of an electrochemically grown iridium oxide film is measured and shows a pH sensitivity between −60 and −80 mV/pH. This sensitivity is found to depend on the state of oxidation of the iridium oxide film; for a higher state of oxidation (or more of the oxide in the high valence state), the sensitivity is also higher. This high sensitivity can be explained on the basis of the extra proton release as a result of the acidic character of the porous hydrous oxyhydroxide, in combination with the redox behaviour.\ud \ud The response time to a pH step is measured and is found to depend mainly on the thickness of the oxide; it varies from 40 ms to 0.35 s due to the porous nature of the film.\ud \ud Drift measurements show that an iridium oxide film in reduced state is slowly oxidized by dissolved oxygen, whereas a pre-oxidized film in a pH = 4.01 buffer solution in contact with air shows a long-term drift of <0.3 mV/h
    • …
    corecore